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Turbulence structure in thermal convection and 
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This paper is a study of turbulence near rigid surfaces, in the absence of any mean 
shear. Different sources of turbulence are considered, including thermal convection 
and grid turbulence. It is shown that, i f a  rigid boundary is introduced into the flow, 
then for short times the linear theory of Hunt & Graham (1978) reveals the common 
structure of these flows near the boundary, if the parameters used are the rate of 
energy dissipation per unit mass 6 and the distance z from the surface. Over longer 
times nonlinear effects develop, such as large 'eddies straining smaller eddies near the 
boundary. Some new estimates are suggested here and compared with the computa- 
tions of Biringen & Reynolds (1981) and experiments of Thomas BE Hancock (1977). 

It is shown that calculations based on the linear theory agree well with many 
measurements of the vertical profiles of turbulence in thermal convection layers, 
including those of the vertical variance, the low-frequency end of the spectrum of 
the vertical turbulence (w), the integral scale of w, and two-point cross-correlations 
of tu. (The latter was aprediction, subsequently tested by atmospheric measurements.) 
Some discussion of the reasons for this agreement are suggested. The observations 
of the effects of mean-velocity gradients near the surface are also shown to be 
consistent with the theoretical arguments proposed here. 

1. Introduction 
There are many kinds of turbulence confined between boundaries, where there is 

no mean flow relative to the boundaries and where the energy for the turbulence is 
supplied within the fluid. 

The examples we shall concentrate on here are: (if turbulent thermal convection 
over a rigid surface with no mean velocity past the surface, where the energy is 
supplied by buoyancy forces acting throughout the interior of the flow (figure 1) ; and 
(ii) turbulence produced by grids placed in the flow (figure 2a) ,  where either the grids 
oscillate in a stationary fluid (MeDougall 1979) or the flow moves through a grid past 
a boundary moving a t  the same speed as the flow (Uzkan & Reynolds 1967; Thomas 
& Hancock 1977 - hereinafter referred to as TH). 

Provided there are no mean velocity gradients near the boundary, turbulence 
measurements show that these flows are also similar to those where turbulence 
impinges on density interfaces. One example is the discontinuity in density a t  
liquid-gas interfaces such as occur at the surfaces of stirred vessels or channel flows 
in chemical processes or a t  the surfaces of rivers (McDougalll979: Komori et al. 1982 ; 
Hunt 1983 ; Rodi 1980). Another example is where there is a large-enough discontinuity 

t Also Department of Engineering, LJniversity of Cambridge. 
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FIGURE 1 .  Observed features of convective boundary layers. (a) Typical mean profiles (from Kaimal 
et al. 1976). (b) Profiles of vertical turbulence (from Deardorff & Willis 1974) measured from towers 
(---) and in a laboratory tank (-.-.-), and derived from a large-eddy computation (-). (c) 
Physical mechanisms (Kaimal et al. 1976; and others). 

in density gradient such as may occur at the boundary between a region of thermal 
convection and stably stratified fluid above or below it  (Carruthers & Hunt 1983). 

As we shall argue, the essential similarity of these flows is that  the average rate 
of dissipation of turbulent energy per unit mass E does not vary appreciably with 
distance z from the boundary. The turbulence structure near the boundary is quite 
different to those where there is a mean flow past the boundary, in which case 6 

increases rapidly near the surface until it  reaches a large limiting value in a small 
viscous sublayer. More precisely, in these shear flows E K z-l, as z /L+O,  where L is 
a scale of turbulence well away from the boundary. 

Shear-free turbulent flows a’re generally discussed in terms peculiar to  their sources 
of energy. In  the case of thermal convection, the turbulence is characterized in terms 
of the surface heat flux Q ,  density p ,  specific heat C,, the surface temperature $,, the 
depth of the convective layer zi, and the distance from the surface, so that by 
dimensional arguments the mean-square vertical turbulence 

and 
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FIGURE 2. Shear-free turbulent boundary layers. (a) (i) Grid turbulence in wind tunnel over a moving 
wall (Uzkan & Reynolds 1967; Thomas & Hancock 1977). ( i i )  Grid turbulence in a tank (McDougall 
1979). (6) Model problem of Hunt & Graham (1978) (plate moving at a local mean speed U ) .  

(Priestley 1959; Kaimal et al. 1976). The physical discussion usually given is entirely 
in terms of the thermal plumes, downdrafts, and entrainment into the plumes. On 
the other hand, grid turbulence near a moving boundary was analysed by Hunt & 
Graham (1978 ; hereinafter referred to as HG) in terms of a characteristic freestream 
turbulent velocity and lengthscales uo and Lo, and the distance z from the surface. 
For example, they and TH found that, near the boundary, 

2 - u;(k):- 
The explanations given there were in terms of eddies impacting on a wall. However, 
the reader will observe an interesting similarity between (1 .1 )  and (1.2), 

The aim of this paper is to show that there are some underlying mathematical and 
physical similarities and a t  the same time some important differences in these flows. 

The analysis of HG strictly applies to a homogeneous turbulent flow which passes 
over a semi-infinite rigid surface (z > 0 ) ,  fixed in space but moving a t  the same 
velocity U as the flow (i.e. a moving belt) or over an  infinite rigid surface which is 
introduced into the flow a t  t = 0, which also moves a t  the same speed U as the flow. 
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I n  the linear theory, for times short compared with the ‘turnover’ time of the 
turbulence, the vorticity is not distorted (except within a thin surface viscous layer). 
So the effect of the surface is simply to add an irrotational flow field to the original 
turbulence. This idealized linear theory is further developed here in $2.1, with an 
emphasis on expressing the results in terms of E .  Recently the effects of the nonlinear 
processes have been studied by Biringen & Reynolds (1981) using the ‘large-eddy’ 
approximation to compute this particular turbulent flow. They found that, following 
the introduction of the boundary, as the turbulence develops, all three components 
of the turbulence near the boundary are amplified to values greater than predicted 
by the linear theory. In  $2.1.3 a physical explanation and quantitative estimate of 
this effect is given in terms of the distortion by the large-scale eddies near the 
boundary of the vorticity of the small-scale eddies, which is a nonlinear process 
excluded from the linear analysis. 

I n  $2.2 it  is argued that the same iinear analysis may also be appropriate for the 
steady state of turbulence near a rigid surface in the absence of shear. Since E is 
approximately constant with height, the mean square vorticity is also approximately 
constant. To satisfy the latter condition for all scales of motion and the condition 
a t  the boundary of zero normal velocity, the simplest form for the turbulent velocity 
field is that it consists of homogeneous turbulence and an appropriate irrotational 
velocity field. 

Then the results ( 1 . 1 )  and (1.2) follow directly from the theory, and, when expressed 
in terms of E ,  the constant of proportionality is obtained in terms of the universal 
Kolmogorov constant for the inertial subrange of turbulence spectra. From the theory 
other second-order moments and spectra of convective and shear-free turbulence can 
be calculated. I n  93 the theory is compared with previously published measurements 
of variance and spectra, and also new measurements of two-point cross-correlations 
in the atmospheric boundary layer (Hunt, Kaimal & Gaynor 1984). In  94 the theory 
is used to analyse the structure of turbulence in a thin, shear-dominated surface 
boundary layer when there is deep thermal convection or a deep, shear-free turbulent 
boundary outside it. 

2. A theoretical model for the ‘source layer’ 

2.1.1. DeJining the model problem 
Imagine an approximately homogeneous turbulent velocity field dH) such as might 

be produced by flow through a grid or produced in the central region between two 
horizontal planes which are sources and sinks of heat. Lo is the integral scale and uo 
is the r.m.s. velocity. The large scales of these two kinds of turbulence would be quite 
different, but the small scales would be similar. Now suppose that a t  t = 0 a rigid 
boundary is placed at z = 0. (If there is a mean velocity U ,  the boundary is assumed 
to move with the flow ; figure 2 ( b ) . )  

On the rigid boundary a thin viscous boundary layer develops with thickness 
6, - (tv); for t L,/uo,  within which the velocity components parallel to the surface 
(u, v) decrease to  zero (HG). Above this viscous layer there is an inviscid inhomogeneous 
‘source’ laycr with thickness of order Lo, which we now analyse. 

2.1. Xudden application of a boundary 
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2.1 .2 .  Initial development ( t  4 Lo/uo) 
The idealized problem can be stated as follows: 

u = U ( H ) ( X ,  t )  ( t  < O ) ,  ( 2 . l a )  

In  the limit ( tv )$ /L ,+O,  or uo Lo/v+O,  the viscous layer is very thin compared with 
the thickness of the source layer. In  the inviscid ‘source’ layer u and o must satisfy 

v x u = o ,  (2 .2 )  

-= (-(u~v)o+(o’v)u)+vpxv - ( 2 . 3 )  
a o  
at 

v-u = 0. ( 2 . 4 )  

(2 
and 

The boundary conditions on o and u are 

u = u(H), 0 = o ( H )  ( t  < O ) ,  ( 2 . 5 ~ )  

(2 .5b )  

I n  the initial development of the source layer, the terms on the right-hand side 
of (2 .3 )  for the advection and distortion of the turbulent velocity by the turbulence, 
and for the generation of vorticity by the buoyancy forces, can be estimated as 

z z 
u’n = O  as -+O,  u + u ( ~ )  as -+a. 

LO LO 

where 8 ,e  are the mean and fluctuating components of temperature, and g is the 
gravitational acceleration. 8, is the value of 8 at  z = 0. Taking the values of @ as 
typical of the central region of a convection zone (scale zi - Lo) from Kaimal et al. 
(1976), we can estimate the value of t for which the change in W ,  Am, relative to its 
initial values ( -  uo/Lo) (for energy-containing eddies), is small: 

Lo L a -l A o  4 1  if t 4 -  LO and t4-(*) 
uo/Lo UO u0 

( 2 . 7 ~ )  

I n  large-scale convection (e.g. in the atmosphere) 
- 
we Log 

4 0 0  
-- 1. 

Thus, if t -4 Lo/uo, A o  is negligible and 

w = WH. (2.7 b) 

Thus initially the vorticity o is not changed; only the boundary condition ( 2 . 5 b )  is 
imposed. Therefore the only possible field is the original homogeneous velocity zdH) 
plus an irrotational incompressible velocity field. Thus for t > 0 

= U(H) + U ( S ) ,  ( 2 . 8 ~ )  
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where u@) = -V#, and # satisfies 

(2.8b) 
a$ z 

az Lo 
Vz$ = 0 subjectto -= d H ) - n  as -+0, 

V#+0  as -+00. 
z 

LO 
We now summarize the results for spectra, variances and correlations derived in 

HG, but expressing them in more general terms for wider application. Note that the 
one-dimensional spectra are 'two-sided' in the sense that integrals are taken from 
-a to  +a, e.g. 

w2 = j @,,dK1, 

but in the following discussion we only refer to positive values of K ~ .  

(i) Near the surface. At the surface the vertical velocity is zero and the energy of 
the horizontal components is equal to  the energy in all three components of dH) as 
both z/Lo+O and Z K , + O :  

m - 

-02 

3 

. .  
For very small scales of spectra, if m1 --f 00 

Thus 
(2.9b) 

( 2 . 1 0 ~ )  

where F = $+G++. Note that, although F = ;J"(") as z/Lo+O and for x/Lo+ 00, 
this equality does not hold for all z/Lo. If dH) is isotropic then 

(2.10b) 

(ii) Spectra. The theoretical forms of the spectra are shown in figure 3. The 
low-frequency spectra of u and v near the surface are such that @ , , ( ~ , + 0 )  is not 
changed, whereas @,,(K,+O) is increased by as much as 0 3 , ( ~ , + 0 )  is reduced, i.e. 

where Liu) is the integral scale of u in the x-direction. The changes in @ll(~l) occur 
where K ,  - l / z .  An important consequence of these results is that the spectra of u 
and v near the boundary depend on the form of the spectra of u, v and w in the 
homogeneous region. 

The one-dimensional spectrum @ 3 3 ( ~ 1 )  of w, the component normal to the boundary, 
is given by (2.55) of HG, which can be re-expressed in terms of the energy-spectrum 
tensor @33 of the homogeneous turbulence, viz 

where k,, = (K ;  + ,;)a, and, if the homogeneous turbulence is isotropic, 

(2.12b) 

where k2 = K : + K ~ + K ~  and E(H)(k) is the energy spectrum (see Batchelor 1953, 
chap. 3).  Inspection of (2.12) and the asymptotic analysis of HG show that, as 
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FIGURE 3. Schematic diagrams of the one-dimensional spectra in shear-free boundary layers of the 
different velocity component: (a )  u or r-component; ( b )  21 or y-component; (c) w or z-component. 
Note that Lo is the integral scale or the w-component in the homogeneous isotropic turbulence 
outside the shear-free boundary layer. 
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z /Lo+O, only the high wavenumbers (kL 1 )  contribute to the integral, and 
therefore only the high-wavenumber form of E ( k )  is significant. But, a t  high 
wavenumbers (kL, % l ) ,  E(k)  has the universal Kolmogorov form 

E(k)  = y U K  dk-5. (2.12 c) 

The constant aK is chosen so that at high wavenumbers the homogeneous one- 
dimensional spectrum has the form 

@ $ F ’ ( K 1 )  = aK E k $ .  (2.12d) 

The results of many measurements indicate that uK = 0.25f0.05 (Townsend 1976, 
p. 98). Thus, by combining (2.1 u-c) i t  follows that, as z/Lo+O, @,,(K,) depends only 
on z ,  aK, and c ;  in other words, the spectrum of w only depends on eddies in the 
homogeneous turbulence that are small compared with z and are not ‘blocked’ by 
the boundary. These eddies are independent of the low-wavenumber part of the 
spectrum of zdH). 

Asymptotic analysis of the resulting integral, confirmed by numerical computation, 
shows that, as z/Lo+O, 

( 2 . 1 3 ~ )  
- 
w2LgJl 

0 3 3 ( K 1 ’ 0 )  = - - - 70 a K  d%:, 
.n 

where? 

= 4.50. (2.13 b) 

In  figure 8 a comparison is made between this limiting form and the value of O,, 
when K~ < Lo1 and z/Lo is small but finite. For the latter computation i t  is necessary 
to know the form of E ( k )  over the whole wavenumber range. So E(k)  is taken to have 
the commonly observed form 

( 2 . 1 3 ~ )  

where g2 = 0.56, as in the von Karman spectrum, defined by HG in their equations 

(iii) Variances. Computations of u2, w2 as functions of %/Lo (see figure 4) show that, 
if the initial turbulence is isotropic, the horizontal variances u2/u2(H),  v2/v2(H) are equal 
and increase above their homogeneous value within a distance of about 0.6Liw1 H),  

or 0.3LLUvH) of the surface. w2 decreases to zero monotonically over a distance of 
about 2L$w9H) or L?yH). The kinetic energy does not change monotonically; in fact 
q2 /q2(H)  decreases to just less than 1 .O when 0 < z < 2LLw3 H), its minimum value being 
0.85. 

By integrating ( 2 . 1 2 ~ )  and using (2.12b,c), 2 can be expressed in the local 
variables E and z when z/Lo 4 1 as 

(2.14a) 

% 1.8&2$ if CL.K = 0.25. (2.14 b) 

(2.62) and (2.63). _ _  
- _  

2 2  - 
w2 = ywaKe3z3, where yw = 7.16, 

From (2.13) and (2.14) the integral scale for Liw)(z) is given by 

L p  (Lo ---to ) =- :;= 1.96%. (2.15) 

t The factor & was mistakenly 1.0 in HG, which explains why y e  is 4.5 rather than 4.0 in HG. 
The computed spectra in HG are correct. This error was pointed out by Mr H .  Wong. 
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FIGURE 4. Variation of u2, v2, w 2 near z = 0 for convective and shear-free boundary layers :$, CBL - as 
summarized by Caughey & Palmer (1979) ; x , mixing-box turbulence near rigid lid (McDougall 
1979) ; ---, wind-tunnel moving floor (Thomas & Hancock 1977) ; -, theory (Hunt & Graham 
1978); -.-., laboratory convection (Adrian & Ferreira 1979). Superscript (H) refers to the values 
in the homogeneous turbulence outside the boundary layers, or in the centre of a convective layer. 

2 4 z / L F H )  

FIGURE 5. Integral scale of the vertical component of turbulence : . . I., CBL measurements; -. .-. *-, 

measured asymptote L$") = z (Caughey & Palmer 1979); ---, SFBL measurements (Thomas & 
Hancock 1977); --, theory (Hunt & Graham 1978); -.-.-, theoretical asymptote Liw) = 22. 

The latter limit is in fact only reached to within 20 7; when z/Lkw, < 0.01. See figure 
5, in which the vertical profile of L!$ is plotted for the energy spectrum of ( 2 . 1 3 ~ ) .  

( iv)  Making rough estimates. A straight-line graphical construction (following 
Kaimal 1973) on the graph of O,, gives rough estimates which may be adequate for 
some practical purposes: for z/L,  < 1 

Then, by integration of (2.16), - 
w2 = 6.7aKdz), 

(2.16) 

which gives 3 close to the exact value in (2.14a). But the estimate for 033(~1+0) 
is a factor of 3 too small. 

(v) Cross-correlations and coherences. A revealing way of studying the effect of a 
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L 

FIGURE 6. Cross-correlations between turbulent velocities at different heights in a SFBL. (a )  
Theoretical curves for Rl,(zlz,) for z1 = 0, 0.3L2-H), l.OLp*H'. ( b )  Cospectra of u1 a t  z1 and z ,  a t  
three wavenumbers, computed with the cospectra in homogeneous turbulence: (i) z1 = 0.3L22"); 
(ii) z1 = 0. ( e )  Cross-correlation of vertical velocity w(zJ zu(z ) /u~z(z l ) ,  normalized on the variance a t  
zlr theory (-) and atmospheric measurements. Measurements a t  Boulder Atmospheric Observa- 
tory (Hunt et al. 1984) : 

Ratio of the height z1 
of the higher point 

to the inversion height zi/Monin-Obukhov length 
Dates = Z1/Zi = zi/L,o 

x 28.4.78 0.21 7 
0 25.4.78 0.084 350 
A 26.4.78 0.21 30 
v 22.9.78 0.17 N 1 0 0  

22.9.78 0.10 = 1 0 0  

boundary on a turbulent flow is to calculate and measure cross-correlations Rii and 
coherences Cii of the ith components of velocity a t  two heights z1 and z ,  where 

and 

(2 .17  a,) 

These functions are also used to calculate fluctuating wind loads on structures and 
to calculate the dispersion of clouds of contaminant. R,, and C,, have been computed 
for various values of z,, z2 and K~ from equations (2.48) and (2.50) in HG, using the 
form of E ( k )  given previously in ( 2 . 1 3 ~ ) .  The results for R,, and C,, plotted in figures 
6 ( a ,  b )  show that the boundary has rather little effect as might be expected from the 
fact that the form of the spectrum of O,, in figure 3 does not change appreciably near 
the boundary. 

However, figure 6 ( c )  shows that the effects of the boundary on R,, and C33 are large, 
which can be understood better by considering the limiting form for R,, near the 
boundary. For arbitrary z1 and z 
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In  the limit that  z1 4 Lo, only the universal high-wavenumber form of E ( k )  is 
relevant. Close to zl, where (zl-z( < z1 4 Lo, by normalizing the integral in terms of 
z l ,  ( 2 . 1 8 ~ )  reduces to  

where 
(2.18b) 

Expressing the integrand in terms of polar coordinates, and integrating first with 
respect to the radial coordinate, the integral can be derived in terms of gamma 
function. Then, using (2.14), 

or 

w(zl) w(z)  = w2(z1) ( 1 - 0.33; - 4 )  

O.6(2, - Z )  

21 
R,, = ( 1 -  

By comparison, in homogeneous turbulence when Jzl - zI 4 Lo, 

Close to the boundary where z 4 z1 4 Lo, ( 2 . 1 8 ~ )  reduces to 

( 2 . 1 8 ~ )  

(2.18 d )  

(2.18e) 

(2 .19~)  

z - 
= w2(z1) x 1.02 - (2.19b) 

21 

and R,, = 1.02(z/z1)~. Inspection of the computed form in figure 6(c) shows that to 
a good approximation near the boundary of these turbulent layers the cross-correlation 
is given by 

( 2 . 1 9 ~ )  

Comparing (2.18d) and (2.18e) and looking a t  fig. 6 c  show how the cross-correlation 
of the vertical velocity a t  two points a given distance 1 z1 - z I apart is very much less 
near the boundary than in the homogeneous turbulence far from the boundary. This 
is because near the boundary the vertical velocity of the large-scale eddies is blocked 
by the boundary. So w(z,) w(z )  is partly determined by these blocked eddies of scale 
z1 and partly weakly correlated small eddies with scale O(z ) .  The latter make much 
less contribution. 

2.1.3. Developing state 
The equation (2.6) for the development of the vorticity in the source layer shows 

that there must be some distortion of the initial vorticity dH) both by the turbulence 
itself and, if they are present, by buoyancy effects. 

We shall find i t  useful to  develop a physical model which gives an order-of-magnitude 
estimate for the change in the turbulence by nonlinear vorticity-distortion processes 
near the boundary. (We shall discuss the nonlinear buoyancy effects in 92.2). 
Essentially we estimate distortions of small-scale turbulent vorticity (on a scale much 
less than z )  by larger eddies which are of the order of z ,  following the discussion by 
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FIQURE 7 .  (a )  Vorticity vector of a small eddy (++) being stretched by the streamlines (+) of a 
large eddy impinging onto the surface. ( b )  Variations of u1 variances: measurements by Thomas 
& Hancock (1977) (---), Biringen I% Reynolds’ (1981) computations at T = 100 (0) and T = 360 
(A);  linear theory of Hunt & Graham (1978) (---); estimate of nonlinear correction 
1 +:(L,/z)i (-). 

Townsend (1976, pp. 99, 100). The components of vorticity w,, wy of eddies on this 
scale are systematically stretched by larger eddies as they impinge on the boundary by 
O[(L,/z)t].  Upward movements have less effect. Consequently, by analogy with the 
amplification of small-scale turbulence in the straining motion at the front _ _  stagnation 
point of a sphere (Durbin 1981), the small-scale horizontal turbulence u2, v 2  in the 
source layer is amplified by this mechanism by O[(L,/z):] (figure 7a). The eddies that 
are large compared with z approach the surface too slowly to have much effect on 
a timescale z /uo .  Thus in the surface layer the rate of increase of 2 and 3 is estimated 
to  be 

and when t - TL - Lo/u0 

(2.20 a) 

(2.20 6 )  

The amplification of 3 is not large, because of the blocking by the surface. (The factor 
in (2.20b) is chosen to agree with Durbin’s (1981) calculation for isotropic turbulence 
being distorted close to the surface of a sphere of radius Lo.) 

Biringen & Reynolds (1981) have used the full nonlinear turbulence equation (with 
some filtering of the smallest scales) to  compute the change in turbulence in the 
source layer. Their results shown in figure 7 ( b )  arc compared with (2 .20b)  and 
with Thomas & Hancoek’s (1977) wind-tunnel measurements. - ~ -  (A further interesting 
consequence of this argument is that i t  implies that  w3, uw2, wv2 are all negative and 
that the turbulent energy in excess of the value predicted from linear theory is to 
be expected where K~ - z-l ,  as TH observed.) 
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We can also compare (2.20a) with the computed and measured rate of growth of 
the turbulence in the source layer: (112)  d 2 l d t  x 0.03U/Lo.  Since the observed 
turbulence intensity ( G ) i / U  x 0.04, the agreement with (2.20a) is well within a factor 
of 2. 

(An interesting result of TH's experiments was that the amplification of u" was 
much greater than 2. Although the velocity shear was small (L,(dU/dz)/U - 1 %), 
over a time - Lo/uo the total strain ( -  4 and - 1 in the two experiments) was 
sufficient to distort the eddies so as to reduce the scale of w in the lateral direction 
(i.e. reduce Lhw)/LLw)) (Townsend 1976, p. 110). Then the straining of wy by impinging 
eddies became greater than that of w5, and hence 2 had to be greater than 2. 
Although TH varied the speed of the boundary relative to the freestream by 5 yo, 
dU/dz was changed only over a distance z < +L, which therefore does not much affect 
this argument.) 

In  a developing convective boundary layer near a surface, one might expect this 
amplification to be less near a lower surface and greater near an upper surface because 
the downdraughts in a convective layer contain less small-scale turbulence than the 
updraughts (Lenschow & Stephens 1980). 

2.2.  Turbulence near a boundary in steady $ow 
2.2. I .  Proposed velocity Jield 

It is observed that in laterally homogeneous thermal convection boundary layers 
(CBLs) and shear-free boundary layers (SFBLs) that the mean rate of energy 
dissipation per unit mass e is approximately constant with height. As a good 
approximation we assume &/az = 0, or, more precisely, 

(2.21) 

For any fully developed turbulent flow, as R --f co, where R = NoL0/v, the mean square 
of the sum of the velocity gradients that determine e is proportional to the 
mean square of the vorticity w = V x U. Thence (see Townsend 1976, p. 42). - 

8 = vlw/2,  (2.22a) 

-- - 0. (2.22b) 
am 

a Z  

and, from (2.21), 

Thus the mean-square vorticity (which is determined by microscale eddies 
( -  R-SL,)) and the eddies in the inertial subrange (where they are small enough not 
to impact on the surface), are independent of z .  

(We recall for comparison that, in shear flows of thickness zi, near the surface where 
z/zi+O, e a zP1 and 1wI2 cc z-l.) 

However, i t  is observed that all the components of the mean-square turbulent 
velocity, and the turbulence integral scales vary with height. Our aim is to develop 
a model for u such that the following conditions are satisfied in (2.21). 

(if The turbulence in the central region of a convective layer is an approximately 
homogeneous turbulent flow zdH), in the sense that a typical integral scale Lo is small 
compared with the thickness zi of the layer (in fact Lo x $+). 

(ii) The vertical component of turbulence tends to zero when z is small compared 
with Lo. (The reason why this boundary condition is not applied in most shear flows 
is because most of the eddies at height z are smaller than the distance to the ground. 
Typically LLw) w (0.5+0.1) z ,  so the proportion of 2 affected directly by the ground 
is less than 20 o/o .) 

- 
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(iii) The flow is incompressible. Thus 

and 

u+u(H)(x,t) @/Lo % l ) ,  (2.23 a )  

u*n+0 as z/Lo+O, (2.23 b )  

v - u  = 0. (2.24) 

Hypothesis: given (2.21) and then (2.22), the simplest solution to (2.24) subject to 

(2.25) I( = U(H) + u(s), (2.23) is that  

where dS) is a source-like irrotational velocity field, which is chosen to satisfy (2.23). 
Thus 

-(u(H))2 = 0, v x U(H) = v x = Q)(H), (2.26 a )  
a -  
aZ 

and 
(2.26 b )  

( 2 . 2 6 ~ )  

(2.26 d )  

The implication of this hypothesis is that u is approximately the same as that 
obtained in $2.1 for the flow near a suddenly introduced boundary. I n  53 we discuss 
the comparison between velocity measurements in the convective boundary layer and 
this model. In  52.2.2 we consider where the model is likely to be in error. 

2.2.2, Some justiifications of the model 

There are two causes for any systematic differences between the vorticity w near 
z = 0 and its value dH) well above a SFBL or its value in the centre of a CBL: 

(i) the systematic distortion of the small-scale vorticity by large-scale eddies 
impinging on the surface (the terms - ( u * V ) w + ( w - V ) u  in (2.3)) as discussed in 
52.1.2; and 

(ii) the variation in the rotational buoyancy force near the surface (the term 
VpxV(l /p)  in (2.3)), which is equivalent in the Boussinesq approximation to 
-gL x Ve/Oo, where L is the unit vector in the vertical. 

Measurements of the spectrum of 0 in a convective boundary layer (e.g. Kaimal 
et al. 1976) show that the large-scale components (i.e. K ~ Z  < 1)  do not vary 
significantly with z .  But in eddies of the scale of z and smaller, the temperature 
fluctuations increase rapidly near the ground. (These measurements are consistent 
with the common observations that the temperature fluctuations of the large 
‘thermals’ - which are characteristic of the centre of a CBL - are measurable a t  the 
surface. But i t  is also observed that these large thermals consist of an accumulation 
of many smaller thermals developing from near the ground. See for example 
Lenschow & Stephens (1980).) 

The dynamical consequences of this structure of the temperature field are that, 
when K ~ Z  < 1,  the rotational buoyancy forces near the surface should not be 
significantly different from those in the centre of the CBL. Nor should the nonlinear 
vorticity distortion amplify w a t  the low wavenumbers. 

However, when K~ z 9 1,  the larger temperature fluctuations are observed not to 
change the form or magnitude of the velocity spectra. One possible reason for this 
is that the timescale of the temperature fluctuations (O(e-k,a)) is not large enough 
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for the buoyancy forces to  affect 033; this is consistent with the fact that  8 and o 
are not well-correlated a t  high wavenumbers. Wyngaard & Cot6 (1972) observed that 
@30ccK$whenKlz% 1 .  

Thus it seems that only when K~ - z-l can surface buoyancy effects or the vorticity 
distortion effects change w from its value in the centre of the CBL. The order of 
magnitude of the change of o due to  these effects over a limited wavenumber range 
is O(1).  The effects of the surface vorticity distortion on w were estimated in $2.1.2; 
the effects of surface buoyancy forces on w have not been estimated; but their effects 
on 3 and on @,, appear to be small, as comparisons between the theory and 
experiment indicate. 

Another way of understanding and estimating the rate of energy transfer e(k) is 
first to consider in homogeneous turbulence the straining ik2Edk  by eddies larger 
than k-' on a timescale characteristic of the large eddies, (/:k2Edk)-!. This straining 
acts on small-scale eddies with energy j,"Edk. Then (Townsend 1976, p. 99) 

This estimate shows that, if in a boundary layer straining by the large eddies tends 
to infinity or zero as z/L+O, then i t  would be impossible fcr 6 to be constant. Hence 
the mean square vorticity of the large eddies is bounded above and below as z+O 
(unlike the case of a shear flow). This provides some support for the hypothesis that  
k2E(k) x constant, and therefore the spectrum of vorticity for all wavenumbers is 
constant. 

I n  the next section we consider a physical interpretation of this model when we 
compare i t  with experimental results. 

3. A comparison of the theory with turbulence measurement in CBL and 
SFBLs 

3.1.1 . Dissipation rate e( z )  
The theory of $ 2  suggested that the turbulence structure near a rigid surface is 

controlled by the form of the high wavenumber part of the spectrum of turbulence 
near the surface. If the Reynolds number of the turbulence is large enough (say 
uo Lo/v > lo3) then the relevant part of the spectrum is the inertial subrange 

3.1. Similarities 

(3.1) 

which is determined by E and the Kolmogorov constant aK. If the Reynolds number 
(R) is only moderate (say uoLo/v - lo2) as in the laboratory grid turbulence of TH, 
then it is observed that the high-wavenumber spectrum has the form of (3.1) provided 
that the actual dissipation E is replaced by E , ,  a suitable 'spectrum' energy-transfer 
rate where E > E,. (Such a procedure may also be necessary in laboratory convection 
experiments.) 

To compare measurements in CBLs and SFBLs with the theory, we express E in 
CBLs in terms of the distance z above the surface, the boundary-layer thickness zi, 
and the boundary-layer surface buoyancy flux gQ/ (6 ,pCp)  (written as w!Jz,). To 
compare measurements in CBLs and SFBLs with each other and with the theory we 
also express E (and es)  in terms of the r.m.s. vertical turbulent velocity wo and the 
integral lengthscale Lo = Liw), of the vertical component in the middle of the 
convective layer (CBL) ( z  - 0.52,) or outside the SPBL. 

CBL. I n  stronglyconvcctive conditions (i.e. W*/U* 2 5) whereu, = ( rs /p) i ,  rs being 

@ - a  €2 -!i 
33 - K 3K1 3 ,  
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the surface shear stress, E(Z)  is observed to vary by less than 15% over the range 
0.1 < z/zi < 0.9. The magnitude oft: is found to be (e.g. Caughey & Palmer 1979) 

E x (0.55&0.1)-. 
zi 

Since wi x 0 . 4 ~ 2 ,  and Lkw, O) x +zi 

t: x ( 0 . 5 5 k 0 . 1 ) ~ :  w3 

where subscript or suffix 0 indicates the value in the centre of the CBL. Here t: is 
measured directly from the very small-scale velocity gradients using Taylor's formula 
(Batchelor 1953) 

E = 1 5 v ( z )  du 

SFBL. Measurements of grid turbulence in a wind tunnel by TH near a wall moving 
a t  the same speed as the mean flow showed that ~ ( z ) ,  in this case the rate of decay 
of the turbulent energy, was approximately constant with z (at least to within 15 yo), 
with magnitude 

(3.3) 
w: 

LLW. 0 )  . t: N 1.5- 

I n  the high-wavenumber part of their spectrum they observed that O,, was described 
by the von Karman spectrum, so that 

Oll(K1) X 0.2Wi(L~w'0))-8K1t. (3.4) 

Thence taking aK = 0.25, (3.4) can be expressed in terms of t:,, where 

w: 
t:, = (0.72 k0.05) v. (3.5) 

3.1.2. Vertical turbulence 

1979), where R - lo7, show that when z/zi+O (but z/zi $- (u*/w*)f) 
CBL. Atmospheric measurements (e.g. Panofsky et al. 1977; Caughey & Palmer 

( 3 . 6 ~ )  

- 
or w2 N (2.4f0.4)t:!z$. (3.66) 

Note that laboratory measurements o f 2  by Adrian & Ferreira (1979), where R - lo3, 
agree with the limiting form of ( 3 . 6 ~ )  but increase in a shorter distance to their value 
in the centre of the CBL than the atmospheric data (see figure 4). (Note that in a 
shear boundary layer where t: varies as E x u",0.42, and ( 2 ) d  x 1.3u,, w"(z) can be 
expressed in the form of (3.66) as 3 = 0.9[a(z)]fb, but with a considerably smaller 
constant.) 

XFBL. Wind-tunnel measurements by T H  for a developing SFBL show that when 

or, in terms of the spectral dissipation t:,, 

2 2  
- 
w2 N 1 .SEZ 2 3  
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Measurements of rather low-Reynolds-number turbulence produced by an oscil- 
lating grid near a rigid surface also decrease in a distance of the order of Lo (McDougall 
1979). 

The data for CBL and SFBLs are plotted in figure 4 together with the theory. In  
the limit z/Liwyo) < 1, if aK = 0.25, the theory (given by (2.146)) is close to the results 
for the SFBL, but less by one-fourth than those of the CBL. For comparison with 
the theory, the turbulence in the centre of the CBL _ _  is assumed to be approximately 
homogeneous, so that w2/wt is compared with w ~ / w ~ ( ~ ) .  

3.1.3. Horizontal turbulence 

CBL. In  the centre of a CBL (%)i/wo % 0.9, while near the ground the inversion 
layer (2); increases. Typically (Caughey & Palmer 1979; Deardorff & Willis 1974; 
Adrian & Ferreira 1979) when z/Liwpo) % 0.2 

_ _  

2 % (1 .5 f0 .3 )z .  (3.8) 

Within a distance 1, from a smooth surface of about 2(Liw* O )  v)i/wo viscous effects 
reduce 2 according to the predictions of HG (see p. 234) and observations in Adrian 
& Ferreira’s (1979) laboratory experiment where L~w)w,/v - 200, lv/zi - 0.05, which 
is close to the estimate of about 0.04. 

SFBL. With grid turbulence in a wind tunnel, T H  found that outside the SFBL 
( z ) $ / w o  % 1.1, while near the surface 

(3.9) 

I n  McDougall’s (1979) experiment with an oscillating grid wo Lo/v - 40, and lv/Lz 
was observed to be about i; the estimate gives 4. 

3.1.4. Spectra and integral scales 

CBL. The wavelength Ag) at which K~ 033(~1) is a maximum is more easily obtained 
from the spectra than the integral scale of the vertical turbulence Liw). However, for 
any of the empirical forms of spectra used by Kaimal et al. (1976) or Kaimal (1978) 
or HG, it is found that A, x 6L,. 

The integral scale has its maximum value in the middle of the CBL a t  z/zi = 0.5, 

( 3 . 1 0 ~ )  
where 

This means that for most of the energy-containing scales the turbulence near the 
surface is effectively uncorrelated with (though not independent of) the turbulence 
near the upper boundary layer of the convective layer a t  z = zi. 

Then, using Caughey & Palmer’s (1979) summary of the observations of Liw)/zi, 
the ratio LiW)(z)/Liw* O )  is plotted against z/Liwg O )  in figure 5. Caughey & Palmer noted 
that, asymptotically when z/zi < 1, the integral scale has the form 

Ag) % 6.02 or Liw) % 1.02. (3.106) 

Figure 5 shows that these observations agree to within 20 yo with the calculation of 
HG for z / L ~ ~ * ~ )  < 1 or z/zi < 0.25. I n  fact, the experimental asymptote agrees with 
the theoretical computation to this accuracy for 0.2 < z/Liwi H, < 0.06. The computa- 
tions only agree to within 20 yo with the theoretical asymptote when z/Liw*H) < 0.01. 
Therefore (3.106) can be regarded as the appropriate limit for practical purposes. 

Kaimal (1978) has found that 0 1 1 ( ~ 1 + 0 )  is independent of height and is given 

Ag) 1: 1.5zi, Liw9O) X 0.252,. 
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FIGURE 8. Variation of low-frequency spectrum of vertical velocity with height. Atmospheric 
measurements of Kaimal et al. (1976) at K~ = 0.6~;': --, theory ((2.12) as K~ -to) ; ---, asymptotic 
limit (z/zi-tO, (2.13)). 

approximately by2zi/47c (i.e. in his notation S(n+O) = @zi). (Note that 2 increases 
when z/zi+O in some observations, but this is not observed to change Q,,(K,+O). )  

At high wavenumbers, the spectra have the same form for all z ,  i.e. when K, ,< l / z i  

Q,,(K,) x CLK ~ K T ' .  (3.11) 

The measurements of the spectrum @&,) by Kaimal(1978) (though not described 
in quite this way) show that when K~ B z-l the spectrum has the Kolmogorov 

where aK z 0.25. 
To test the theory at low frequency (where atmospheric measurements are 

especially difficult), the predictions (2.12) and (2.13) are compared in figure 8 with 
measurements, a t  a particular frequency ( K ~  = (27c/10) z;,), of the variation of the 
spectrum of w. The normalized spectrum ~ K ~ Q ~ , ( K , ) / ( E ~ Z ~ % )  is plotted as a function 
of z/zi, when z/zi 4 1 and K ,  4 z-'. The data are taken from figure 3 of Kaimal et 
al. (1976). It appears that, a t  the lowest values of z/zi, the 20 % systematic difference 
between observations and theory is of the same order as experimental error. Note 
that as z / z ,  -to the asymptotic form for Q,,, viz 

@,,(K, -to) a d z g  (3.12) 

is only theoretically accurate to 15 % when z/zi < 0.01. 
I n  figure 6 ( c )  measurements of cross-correlations of the vertical velocity at different 

heights (provided z < z1 4 zi) (on different days and with different relative intensities 
of thermal-to-shear turbulence, as measured by w,/u,) are compared with the 
theoretical results, described in 92. The predictions that w(z,) w(z) cc z as z+O and 
w ( z l ) w ( z ) / ~ ( z l )  is a function of z/zl are borne out  rather convincingly. This 
asymptotic prediction is not as dependent as (3.12) on the smallest scales of 
turbulence, and so appears to  be valid even when z < 0.12, and z1 < 0 . 1 ~ ~ .  

inertial-subrange form 
@33(K1)  = $ C ~ K  €gKC' 

SFBL. The wind-tunnel measurements show that when z/L,  4 1 

LLW:w, x 1.02, (3.13a) 
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and when z N 2LiWg0) (3.13b) 
_ -  

whereas wz/w2(H) x 1.0. This shows how the large scales are affected by the wall to 
a greater distance than 2. 

The measured values of L!$‘) in the CBL and in TH’s experiment for the SFBL are 
plotted in figure 5 along with the theory. It is difficult to tell whether the theoretical 
limit (2.15) agrees with the observations. For practical purposes, when z / L ,  < 0.1,  
the observations as described by ( 3 . 1 0 ~ )  and ( 3 . 1 3 ~ )  agree well with the theoretical 
computations for the typical form of E ( k )  given in ( 2 . 1 3 ~ ) .  

3.2. Discussion of the differences and similarities 

I n  the discussion of turbulence in a developing SFBL without buoyancy forces, it 
was suggested in $2.1.3 that  the straining of small-scale turbulence by large-scale 
eddies impinging on the wall leads to  negative values of 2 and &. However, in a 
CBL it  is observed that both these third-order moments are positive; by similarity 
arguments or inspection of the equation governing the growth of third-order 
moments, i t  is expected that when z < zi 

w3 K €75. ( 3 . 1 4 ~ )  

The buoyancy term in the third-order moment equation, gw28/00, is the main cause 
for the positive skewness (Wyngaard 1979). Laboratory data, and atmospheric data 
obtained from information on aircraft and towers, show that for z < 0.22, 

w3 % (1.0+0.25).sz (3.14b) 

- 

~ _ _  

- 

(Hunt et al. 1984; Lenschow, Wyngaard & Pennell 1980). 
The physical reason for this skewness is that  buoyancy forces affect the structure 

of turbulence a t  a scale of order z ,  as well as the largest scale z,. I n  other words, i t  
is only a useful approximation for second-order moments to regard the turbulence 
structure near the ground as largely the distortion of srnall-scale isotropic turbulence 
caused by the boundary condition of zero vertical velocity a t  the ground. 

At first sight this physical model has little relation to the description of convective 
turbulence, developed by Priestley (1959), as largely an assembly of converging 
thermal plumes which are narrow near the ground and entrain each other into larger 
plumes as they rise. Between the plumes, cooler air sinks with relatively smaller 
velocities. With arrays of ground-level instruments (Wilczak & Tillman 1980) and 
analysis of aircraft-mounted probes (Lenschow & Stephens 1980), this physical 
picture has been substantiated and quantified; for example, in t,he variation with 
height of the shape, the diameter and the number of thermal plumes per unit area. 

However, there should be no contradiction between that model and the one 
presented here if we recognize that this is a statistical model. For example, this model 
suggests that small-scale turbulence is the largest contribution to the vertical 
variance near the ground. This turbulence is probably mainly produced by the intense 
almost-isotropic turbulence in the shear layers bounding the rising thermals. However, 
the scales of these eddies, which are of the order of their height z above the ground, 
are large enough that they are confined by the boundary a t  z = 0. I n  other words, 
one can think of the rising thermals as having image thermals below the ground to 
ensure that w = 0 at z = 0, as suggested in figure 9. 

This picture conveys the essence of the model presented here, though i t  is perhaps 
surprising what a strong effect these ‘image’ thermals have and how by considering 
their effect, so much can be deduced just in terms of the mean rate of energy 
dissipation. 
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FIGURE 9. Schematic diagram of 'image' thermal plumes; an essential 
qualitative feature so that w = 0 at z = 0. 

4. Effects of mean-velocity gradients near the surface 
We have assumed so far that, if a mean velocity U exists it is uniform, so that at 

z = 0 the bottom surface moves or else there is an infinitesimally thin boundary layer. 
We now consider briefly the turbulence near z = 0 when there is an inner shear layer 
of thickness 6 < Lo, where Lo = Lkw*O). Let the surface shear stress be pui (figure 10). 

When z > 6 the turbulence of the inner layer decays and one expects that its effect 
on the external turbulence is negligible. But, whatever the value ofu,/wo at some value 
of z < 6, the vertical components of the shear-driven turbulence (w,) and the external 
turbulence (we) are of the same order of magnitude, since we -to as z+O. If S < Liwg O), 

the interaction of we with the velocity gradie t dU/dz is weak, according to the 
rapid-distortion calculations of Durbin (1979), "and any direct interaction between 
u, and us by the vortex-stretching mechanisms of $2.1.2 is weaker by O(S/Lo) than 
the self-induced effects of u, on itself. These are plausible physical reasons to expect 
that us and u, are statistically independent when S 4 Lo. In that case 

? 

where a, and a, are the measured turbulence structure parameters, which Townsend's 
(1976, p. 107) table give as 4 < a, _ -  < 6.25 and a, sz 1.7. The functions f u ,  f w  are taken 
as the measured variations of u2, w2 in the shear layer in the absence of external 
turbulence. Typically 

(4.3) 

_ _  
If 6/Lo < 0.05, from $$2.1 and 3.1,G x (1.5+0.5) u;, wg N 7a,(~~)lz3, where E ,  is the 
dissipation in the external turbulence. For values of SILO greater than, say, a, the 
external turbulence can amplify and diffuse upward some of the shear-generated 
turbulence and some of the surface Reynolds stress. In that case f,, f w ( z )  could be 
greater and extend further upwards than in the absence of external turbulence. 
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FIGURE 10. Large-scale turbulence nead surfaces where there is a thin shear layer: (a) on a rigid 
surface; ( b )  at a free surface; (c) typical profiles of w2 for different values of 8/L.  

Wind-tunnel measurements have been made of the interaction of large-scale 
external turbulence and developing thin boundary layers. (a)  Over an aerofoil 
boundary layer, where SILO x 0.2, i t  was found that 3 decreased near the surface 
outside the shear layer, where z > 6, before increasing inside the boundary layer z < S 
(Graham 1975; the data are plotted on figure 5 - of HG). ( b )  Near a boundary layer on 
a wind-tunnel wall where S/Lo x 0.8 and u* - (u$it was found that 3 monotonically 
decreased as z+O (Petty, unpublished). These two kinds of behaviour are consistent 
with (4.1) and (4.3). ( c )  I n  zero-pressure-gradient boundary layers on a flat plate where 
S - Lo and u* - ( 2 ) i  the maximum values off, and f, were found by Arnal, Cousteix 
& Michel(l976) to  be largely unaffected by external turbulence, but there was indeed 
some upward diffusion of the boundary-layer turbulence by a distance of order S. 

I n  the CBL the thickness of the shear layer on z = 0 is not determined by external 
constraints as in the two developing wind-tunnel flows. It is observed that when 
0 < u*/w* < 0.25 or u*/wo < 0.25, the shear-layer thickness is (0.4 to  0.8) L,, and that 

- - 
u2 = a, u$.+ui, 

Thus (w”) l>  (z)j when z/zi < (u,/w,)i. So effectively in the CBL 

Equations (4.4) are the results obtained by Panofsky et aE. (1977), and were 
explained in terms of the convective ‘ mixed-layer ’ turbulence affecting the surface 
shear layer, rather than in terms of the statistical independence of the two kinds of 
turbulence. 

If  the assumption of statistical independence applies to the variances, it should also 
apply to the spectra; the empirical expressions developed by Kaimal (1978) to 
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describe the measurements do indeed satisfy this criterion even at the highest 
wavenumbers. 

For example, when K~ % 6-' (or Lo1) 

where energy dissipation in the shear layer E ,  = u;/(0.4z). For the horizontal 
components at  low wavenumber, i t  is interesting to note that 

(4.5) 
\ 

where Lg? s, is of the order of the shear-layer thickness 6 and is the integral scale of 
the u-component of turbulence produced in the shear layer. Therefore the external 
turbulence dominates the low-frequency horizontal turbulence, even well within the 
inner shear layer. 

The same arguments used here may well have a wider validity wherever large-scale 
intense freestream turbulence exists outside an inner boundary layer. (Some comments 
to this effect were also made by Bradshaw 1978.) 

5. Discussion 
5.1. Previous analyses 

Previous analyses of turbulence in the CBL (Priestly 1959; Wyngaard, Cot4 & Izumi 
1971) have been largely based on the dimensional argument that the turbulence 
structure is determined by the buoyancy flux gwB/B, at the ground, the height above 
the ground, and the inversion height zi. Some physical justification for these 
dimensional forms came from the observation that the vertical motion in a CBL 
resembles buoyant plumes rising from the surface. This approach led to a number 
of significant predictions, e.g. 3 ot d. But, inevitably, i t  could not provide much 
insight into spectral forms or the connection with the nonconvective SFBL. Having 
said that, the kinematic theory presented here does not contradict these models; its 
aim is to demonstrate some common aspects of the kinematical structure of all 
shear-free boundary layers. 

In the analysis presented here, the primary assumption is that in shear-free flows, 
where a€/& x 0 over a scale Lo, there is a simple turbulence structure which satisfied 
this constraint and the boundary condition on z = 0. This, formally, is a different 
problem to the initial development of a flow of homogeneous weak turbulence as it 
impinges onto a flat plate. In that case, no assumption is needed about ~ ( z )  or about 
the form of the turbulence ; both followed from the boundary conditions. However, 
the solution is the same as that proposed here for SFBLs and CBLs. 

_ -  

5.2. Validity of the analysis 

The comparison between the kinematic theory and the measurements of variance, 
integral scale, cross-correlation and spectra indicates that the theory provides a 
physical reason why the turbulence of CBLs and SFBLs should have an approximately 
similar structure, near the wall, why the vertical turbulence near the boundary should 
be determined by E and z only, and why their turbulence structure may differ when 
z - Lo because of different forms of their spectra far from the surface. 

The arguments of SS2.2 show why in SFBLs the linear model cannot allow for some 
important nonlinear amplification of u, v ;  in $3.2 we showed how it cannot describe 
how buoyancy forces affect some aspects of the turbulence even very close to the 



184 J .  C .  R. Hunt 

surface. The simple model is therefore also useful as an indicator of the differences 
between SFBLs and CBLs. 

The usefulness of the model has been demonstrated by its prediction of two-point 
cross-correlations, which, on being measured, agree well with the theory. Further uses 
of the model have been mentioned in 5 1. 

This paper largely arose from discussion with Dr J. C. Wyngaard and Dr J. C. 
Kaimal, to whom I am very grateful. I am also grateful to the referees and Dr 
D. Lenschow (of NCAR) and Mr H. Wong (of DAMTP) for helpful suggestions, and 
to CIRES, NOAA and NCAR in Boulder, Colorado, for their financial support during 
visits in 1980, 1982 and 1983. 
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